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6. GENERATING FUNCTIONS. FIBONACCI NUMBERS AND LINEAR RECURRENCE RELATIONS

6.1. Examples of generating functions. Consider the following two examples.
Example 1. Consider the sequence a,, = n+ 1, n € Z>o. Then the generating function is

d d 1 1
Alx)=1+2z+32°+...= —(1 24.)=— = .
(z) + 2x 4 3z° + dx(+x+x-+ ) dx<1_x) e

Example 2. Consider the sequence b, = (n+1)2, n € Z>¢. Arguing in a similar way, one gets
that the generating function is B(z) = L A(z) — A(z).

6.2. Fibonacci sequence. The Fibonacci sequence (F},),>0 is defined by the following recursive
formula:
Fo = 0, F1 = 1, Fn = Fn—l + Fn—2 n Z 2.

Another way to interpret the Fibonacci sequence is the following: let S, denote the number
of ways in which one can climb n stairs if allowed to jump one or two stairs at a time. This is the
same as to count the number of the solutions of the equation 1 + ...+ zx = n where z; € {1,2}
and the number k is not fixed. We observe that S; = 1, So = 2 and Sy, 42 = Sp+1 + 5, for all
n € Z>1. Therefore, we have S,, = Fj,11.

Identities for Fibonacci numbers. The sum of the first n numbers of the Fibonacci sequence,
is

> Fi=Fua—1.
k=0

Exercise 6. Prove the following identities for Fibonacci numbers:
((L) Fi+Fs+ F5...4+ Fy, 1 = Iy,
(b) Fony1 =3Fo1 — Fop3
(©) Fayop1 = Foy1Fppr + FuFy,.
Explicit formula for Fibonacci numbers. We want to find an explicit formula for the value
of the n-th Fibonacci number. We will present several possible ways to do that.
Method 1.

We will use the generating functions. Let F'(z) denote the generating function of the Fibonacci
sequence (Fp, F,...) that is

F(z) = Fo+ Fiz + Fox® + Fya® + ...

Note that the convergence radius of this series is at least % Multiplying F'(x) by x, respectively

z2, we obtain that

.%‘F(.%’) = Fyx + F1.1’2 + ngrg + F3:E4 + ...
xZF(ac) = F’()ZL‘2 + F1:E3 + FQ.CC‘4 + F3£C5 +....

Recall that for every n > 2, we have F,, = F,, 1 + F,,_» and consider F(x) — 2F(z) — 22F(x).
Grouping together the coefficients of z* for every k, one obtains that

F(z) — 2zF(z) — 2°F(z) =
ZFo—l—x(Fl—FU)—I—"EQ(FQ—Fl—FQ)+173(F3—F2—F1)+...—|—l’k<Fk—Fk_1—Fk_g)—l—....
This implies F(z) — 2F(x) — 22F(z) = x and thus

x
F(z) = 1—xz—22
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This means, the general term is

_ F)(0)

n =

n!
where F(™(0) is the value in 0 of the n-th derivative of F(z). We factor 1 — 2 — 2% as —(z —
z1)(x — x2), where x1 9 = %\/E This means

T A B A(x — z2) + B(x — 1)
F = = =
(z) l—z—22 x—m1 x—129 —(1—z—2?)

From this we obtain that
A+B=-1 and Axy+ Bx; =0.

This is a system of two equations with A and B as unknowns, so we can obtain exact values for
A and B:

One can obtain that:

A B A 1 B 1
F(r) =— ey ml—Z 1=
T — T T — T T o ) .
A& B &
- _ m1—n$n_7zx2—nxn
Tl — XTo —
n=>0 n=0

oo

1
=2 "
n=0 \/g

This implies that the general term F), is

b L (15 [1=vBY
"B 2 2 '
Method 2.

We look first for a geometric series that satisfies F,, = F,,_1 + F},_2, that is F,, = c¢- o™ for all
n € Zx>o. This implies that ca™ = ca™ ' +ca™ 2 and thus a®? —a—1 = 0. Solving this quadratic

equation, we get a1 = %\/5 Next, we search for F;, in the form

1 " 1-v5\"
Fn:cla?—FcQag:cl( +\/5> +02< \/5>

2 2
for some ¢y, co € R. The initial conditions imply

Fo=c1+c=0

= <1+\/5>—|—02 (1_\/5> =1.
2 2

Thus, the only solution is
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Hence we find

1 ((1+v5)" [1-v5\"
F,=— — .
V5 2 2
6.3. Linear recurrence relations. In general, to solve linear recurrence relations of the form
Ontk = Ck—10n+k—1 1 ... + Coln
we have the following recipe. Denote by A1,... s the (possibly complex) roots of the equation
e = Ckfl)\k_l + ...+
where \; has multiplicity k; and >, k; = k.
Theorem 6.1. A formula for a, is the solutions to the recurrence above if and only if it has
the form an, =Y ;| Pi(n)Al', where each P;(n) is a polynomial of degree k; — 1 with coefficients
chosen arbitrarily. Moreover, for any set of initial values ag,...,ar_1 one can find coefficients

of the polynomials P;(n) so that the solution fits to the initial values. Note that the number of
coefficients to be determined is equal to k, the number of initial values.



