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6. Generating functions. Fibonacci numbers and linear recurrence relations

6.1. Examples of generating functions. Consider the following two examples.
Example 1. Consider the sequence an = n+ 1, n ∈ Z≥0. Then the generating function is

A(x) = 1 + 2x+ 3x2 + . . . =
d

dx
(1 + x+ x2 + . . .) =

d

dx

�
1

1− x

�
=

1

(1− x)2
.

Example 2. Consider the sequence bn = (n+1)2, n ∈ Z≥0. Arguing in a similar way, one gets

that the generating function is B(x) = d
dxA(x)−A(x).

6.2. Fibonacci sequence. The Fibonacci sequence (Fn)n≥0 is defined by the following recursive
formula:

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 ∀n ≥ 2.

Another way to interpret the Fibonacci sequence is the following: let Sn denote the number
of ways in which one can climb n stairs if allowed to jump one or two stairs at a time. This is the
same as to count the number of the solutions of the equation x1+ . . .+xk = n where xi ∈ {1, 2}
and the number k is not fixed. We observe that S1 = 1, S2 = 2 and Sn+2 = Sn+1 + Sn for all
n ∈ Z≥1. Therefore, we have Sn = Fn+1.
Identities for Fibonacci numbers. The sum of the first n numbers of the Fibonacci sequence,
is

n�

k=0

Fk = Fn+2 − 1.

Exercise 6. Prove the following identities for Fibonacci numbers:

(a) F1 + F3 + F5 . . .+ F2n−1 = F2n

(b) F2n+1 = 3F2n−1 − F2n−3

(c)∗ Fa+b+1 = Fa+1Fb+1 + FaFb.

Explicit formula for Fibonacci numbers. We want to find an explicit formula for the value
of the n-th Fibonacci number. We will present several possible ways to do that.
Method 1.
We will use the generating functions. Let F (x) denote the generating function of the Fibonacci
sequence (F0, F1, . . .) that is

F (x) = F0 + F1x+ F2x
2 + F3x

3 + . . . .

Note that the convergence radius of this series is at least 1
2 . Multiplying F (x) by x, respectively

x2, we obtain that

xF (x) = F0x+ F1x
2 + F2x

3 + F3x
4 + . . .

x2F (x) = F0x
2 + F1x

3 + F2x
4 + F3x

5 + . . . .

Recall that for every n ≥ 2, we have Fn = Fn−1 + Fn−2 and consider F (x) − xF (x) − x2F (x).
Grouping together the coefficients of xk for every k, one obtains that

F (x)− xF (x)− x2F (x) =

= F0 + x(F1 − F0) + x2(F2 − F1 − F0) + x3(F3 − F2 − F1) + . . .+ xk(Fk − Fk−1 − Fk−2) + . . . .

This implies F (x)− xF (x)− x2F (x) = x and thus

F (x) =
x

1− x− x2
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This means, the general term is

Fn =
F (n)(0)

n!

where F (n)(0) is the value in 0 of the n-th derivative of F (x). We factor 1 − x − x2 as −(x −
x1)(x− x2), where x1,2 =

−1±
√
5

2 This means

F (x) =
x

1− x− x2
=

A

x− x1
+

B

x− x2
=

A(x− x2) +B(x− x1)

−(1− x− x2)

From this we obtain that

A+B = −1 and Ax2 +Bx1 = 0.

This is a system of two equations with A and B as unknowns, so we can obtain exact values for
A and B:

A =
x1√
5

B =
−x2√

5
.

One can obtain that:

F (x) =
A

x− x1
+

B

x− x2
= − A

x1

1

1− x
x1

− B

x2

1

1− x
x2

=

=− A

x1

∞�

n=0

x−n
1 xn − B

x2

∞�

n=0

x−n
2 xn

=
1√
5

∞�

n=0

x−n
1 xn − 1√

5

∞�

n=0

x−n
2 xn.

=
∞�

n=0

1√
5

�
x−n
1 − x−n

2

�
xn.

This implies that the general term Fn is

Fn =
1√
5

��
1 +

√
5

2

�n

−
�
1−

√
5

2

�n�
.

Method 2.
We look first for a geometric series that satisfies Fn = Fn−1 + Fn−2, that is Fn = c · αn for all
n ∈ Z≥0. This implies that cαn = cαn−1+cαn−2 and thus α2−α−1 = 0. Solving this quadratic

equation, we get α1,2 =
1±

√
5

2 . Next, we search for Fn in the form

Fn = c1α
n
1 + c2α

n
2 = c1

�
1 +

√
5

2

�n

+ c2

�
1−

√
5

2

�n

for some c1, c2 ∈ R. The initial conditions imply

F0 =c1 + c2 = 0

F1 =c1

�
1 +

√
5

2

�
+ c2

�
1−

√
5

2

�
= 1.

Thus, the only solution is

c1 =
1

5
c2 =

−1

5
.
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Hence we find

Fn =
1√
5

��
1 +

√
5

2

�n

−
�
1−

√
5

2

�n�
.

6.3. Linear recurrence relations. In general, to solve linear recurrence relations of the form

an+k = ck−1an+k−1 + . . .+ c0an

we have the following recipe. Denote by λ1, . . .λs the (possibly complex) roots of the equation

λk = ck−1λ
k−1 + . . .+ c0

where λi has multiplicity ki and
�s

i=1 ki = k.

Theorem 6.1. A formula for an is the solutions to the recurrence above if and only if it has
the form an =

�s
i=1 Pi(n)λ

n
i , where each Pi(n) is a polynomial of degree ki − 1 with coefficients

chosen arbitrarily. Moreover, for any set of initial values a0, . . . , ak−1 one can find coefficients
of the polynomials Pi(n) so that the solution fits to the initial values. Note that the number of
coefficients to be determined is equal to k, the number of initial values.


